Power Reflection in a Single Stage FARAD Thruster

Benjamin Tai

EPPDyL

PPST Summer Intern

What is FARAD?

- Faraday Accelerator with Radio-frequency
 Assisted Discharge
- Pulsed inductive acceleration

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$
.

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.$$

1st Generation FARAD

CTP FARAD

Single Stage FARAD?

- Generate and accelerate plasma with one antenna
 - 13.56 MHz RF signal for plasma generation
 - Pulsed signal from capacitor for acceleration

- Why?
 - Simpler
 - More compact

So what's the problem?

- Power reflection from capacitor discharge
 - Too much power intoRF source

 Large voltages required to create current sheet – even low power reflected will cause damage to RF source

Power into RF Source

- Capacitor is charged to 5V
- Hammer-type switch
- ~8V max!

Impedance Match

- L Network Series and shunt capacitor
- Antenna and L Network impedance = Signal source impedance
- Minimizes power reflected (in theory)

Impedance Match, Cont.

- ~4V max!
- 80% power reflection
- Pulse duration <10% of base circuit

Resonator

- Permits signal at resonant frequency attenuates signals at other frequencies
- Options:
 - Series LC resonance circuit
 - Parallel LC resonance circuit
 - Shorting stub
- Series LC resonant circuit offers best performance

Resonator, Cont.

- Significant decrease in signal amplitude
- ~1.5V max -> ~30% power reflection
- Still too high

Power Reflection Comparison

```
8 :
    6
Reflected Power (V)
             0.000005\,0.00001\,0.000015\,0.00002\,0.000025\,0.00003\,0.000035\,0.00004
   -2
   -4
                                               Time (s)
```

What now?

- ~30%(!!) power reflection even with impedance match and series LC resonator
- Switch?
 - Short recombination time (on the order of μ s)
 - Would have to take high power
- Diode?
 - Cannot take very much power

Conclusion

- Single stage FARAD might not be possible!
- The power reflection problem may not be solvable when using 13.56 MHz RF signal
- No way to prevent damage to RF source

Thanks to:

Edgar Choueiri

Bob Sorenson